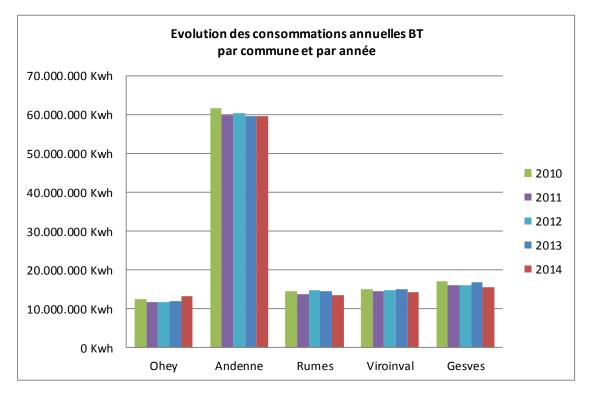


AIEG Rue des Marais ; 11 5300 Seilles

ANNEE 2015

Plan d'adaptation 2016-2019

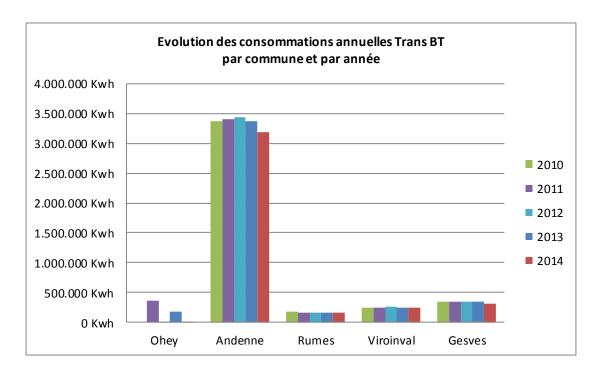
Réseau de distribution d'électricité


1. Besoins en capacité

1.1. Evolution de la consommation/production et des pointes de charge pouvant en résulter

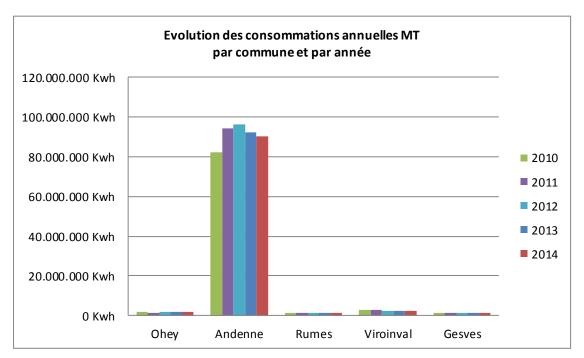
Les tableaux suivants donnent un aperçu des consommations des 6 dernières années, par commune :

Pour les clients, basse tension :


	ВТ													
	Ohey	Andenne	Rumes	Viroinval	Gesves	Total	Evolution							
2008						117.222.093 Kwh								
2009	11.830.665 Kwh	61.708.888 Kwh	14.180.413 Kwh	15.171.902 Kwh	16.952.932 Kwh	119.844.800 Kwh	2,24%							
2010	12.351.076 Kwh	61.604.253 Kwh	14.516.125 Kwh	15.041.846 Kwh	17.071.572 Kwh	120.584.872 Kwh	0,62%							
2011	11.736.360 Kwh	59.762.349 Kwh	13.795.279 Kwh	14.432.934 Kwh	16.082.466 Kwh	115.809.388 Kwh	-3,96%							
2012	11.689.330 Kwh	60.463.841 Kwh	14.667.767 Kwh	14.738.899 Kwh	15.991.469 Kwh	117.551.306 Kwh	1,50%							
2013	12.045.959 Kwh	59.588.506 Kwh	14.583.149 Kwh	15.041.734 Kwh	16.740.742 Kwh	118.000.089 Kwh	0,38%							
2014	13.317.844 Kwh	59.627.546 Kwh	13.381.297 Kwh	14.197.388 Kwh	15.412.230 Kwh	115.936.306 Kwh	-1,75%							

La consommation des utilisateurs BT en 2014 a diminué de 1,75% par rapport à 2013, s'établissant au même niveau que la consommation BT en 2015, cette diminution est certes à relativiser, car il faudrait prendre en considération les installations photovoltaïques dont la production totale sur le réseau de l'AIEG avoisinait les 10.000.000 de kWh, ce qui ferait de l'année 2014 une année de consommation, nous verrons en 2015 si la tendance baissière se confirme , ou si on vas assister à une stabilisation de la consommation BT.

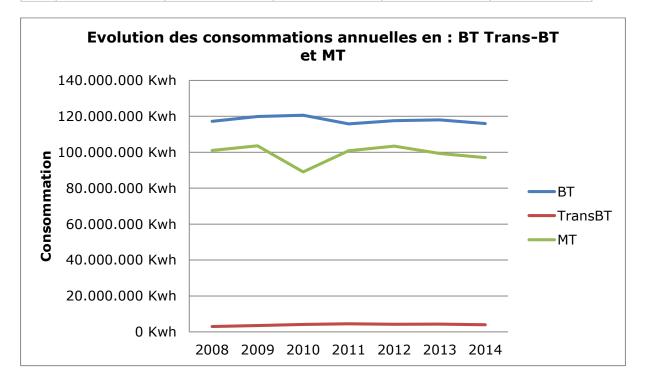
Pour les clients Trans-BT (PME, indépendant) :


	Trans BT													
	Ohey	Andenne	Rumes	Viroinval	Gesves	Total	Evolution							
2008						2.964.512 Kwh								
2009	0 Kwh	3.082.278 Kwh	156.207 Kwh	251.756 Kwh	278.872 Kwh	3.495.314 Kwh	17,91%							
2010	0 Kwh	3.369.310 Kwh	177.536 Kwh	245.493 Kwh	348.869 Kwh	4.141.208 Kwh	18,48%							
2011	362.325 Kwh	3.411.251 Kwh	165.944 Kwh	239.527 Kwh	345.401 Kwh	4.524.448 Kwh	9,25%							
2012	12.128 Kwh	3.438.137 Kwh	160.948 Kwh	255.329 Kwh	343.341 Kwh	4.209.884 Kwh	-6,95%							
2013	174.792 Kwh	3.380.372 Kwh	161.222 Kwh	244.925 Kwh	347.090 Kwh	4.308.401 Kwh	2,34%							
2014	11.510 Kwh	3.191.261 Kwh	168.358 Kwh	242.002 Kwh	314.377 Kwh	3.927.508 Kwh	-8,84%							

Diminution vertigineuse de La consommation des clients Trans BT (PME, Commerces ...) sur la commune d'OHEY, revenant à son niveau de 2012.

Pour les clients, Moyenne tension (> 10 kV)

	MT														
	Ohey	Andenne	Gesves	Total	Evolution										
2008						100.956.226 Kwh									
2009	1.590.657 Kwh	83.707.559 Kwh	1.135.735 Kwh	2.650.308 Kwh	1.456.880 Kwh	103.534.679 Kwh	2,55%								
2010	1.643.141 Kwh	82.149.115 Kwh	1.205.816 Kwh	2.591.359 Kwh	1.457.406 Kwh	89.046.837 Kwh	-13,99%								
2011	1.355.662 Kwh	94.264.871 Kwh	1.160.714 Kwh	2.585.773 Kwh	1.452.514 Kwh	100.819.534 Kwh	13,22%								
2012	2.011.196 Kwh	96.423.435 Kwh	1.153.300 Kwh	2.446.534 Kwh	1.360.715 Kwh	103.395.180 Kwh	2,55%								
2013	1.944.526 Kwh	92.453.668 Kwh	1.285.081 Kwh	2.264.244 Kwh	1.331.916 Kwh	99.279.435 Kwh	-3,98%								
2014	1.785.305 Kwh	90.336.547 Kwh	1.306.849 Kwh	2.282.456 Kwh	1.282.759 Kwh	96.993.916 Kwh	-2,30%								


Nette diminution en 2014 de la consommation des clients MT (2,3%), il n'y a pas d'explication particulière à cette diminution, autre que la multiplication des installations photovoltaïques chez les entreprises du bassin andennais, en effet , le changement de régime des CV pour les installation supérieure à 10 kVA a poussé beaucoup d'entreprises à faire l'investissement . ci-contre un tableau reprenant une liste non exhaustives des installation les plus importantes

Entreprise	P (kVA)	remarques
IRM	276	PV
JUMATT	140	PV
DEBARSY	45	PV
AGIE	20	PV
MEERSMAN	71	PV
METALPROTECTION	103,8	PV
MOLITOR	16	PV
MATCH	146	PV
HUBO	55	PV
BIOSPACE	600	Cogénération
INTERGARI	2000	Cogénération

Rien que pour les installations photovoltaïques, la production estimée en 2014 est d'environ 1.000.000 de kWh, ce qui correspondrait à plus d'un tiers de la diminution constatée, les deux installations de cogénérations quant à elles peuvent, en fonction du nombre d'heure d'utilisation produire entre 2 et 5.000.000 de kWh, on peut donc conclure que la diminution de la consommation des clients MT est, comme pour les client BT , plus due à la multiplication des productions décentralisées qu'à une conjoncture économique défavorable .

Sur l'ensemble du réseau AIEG, la quantité d'énergie distribuée par commune, par année se présente comme suit :

	Réseau AIEG												
	BT	TransBT	MT	Total	Evolution								
2008	117.222.093 Kwh	2.964.512 Kwh	100.956.226 Kwh	221.142.831 Kwh									
2009	119.844.800 Kwh	3.495.314 Kwh	103.534.679 Kwh	226.874.793 Kwh	2,59%								
2010	120.584.872 Kwh	4.141.208 Kwh	89.046.837 Kwh	213.772.917 Kwh	-5,77%								
2011	115.809.388 Kwh	4.524.448 Kwh	100.819.534 Kwh	221.153.370 Kwh	3,45%								
2012	117.551.306 Kwh	4.209.884 Kwh	103.395.180 Kwh	225.156.369 Kwh	1,81%								
2013	118.000.089 Kwh	4.308.401 Kwh	99.279.435 Kwh	221.587.925 Kwh	-1,58%								
2014	115.936.306 Kwh	3.927.508 Kwh	96.993.916 Kwh	216.857.730 Kwh	-2,13%								

On note au total une diminution de 2.13% de la consommation d'énergie électrique, mais si on prend les estimations des productions décentralisées :

Estimation Production PV particuliers	10.000.000 kWh
Estimation Production PV Entreprises	1.000.000 kWh
Estimation Autres Production décentralisées	2 - 5.000.000 kWh
Total	~ 13 - 16.000.000 kWh

On peut conclure que cette diminution n'est que fictive et que le total de l'énergie consommée dans le réseau de l'AIEG se situerait entre 229 et 232 millions de kWh, soit une augmentation de 9% par rapport à l'année 2011 ou la consommation était repartie à la hausse.

Pour les 3 prochaines années , nous prévoyons une augmentation hors productions décentralisées d'environ 1,5% par année

Postes Sources

L'AIEG est connectée au réseau d'ELIA sur 4 points différents :

- Sous Station Bois D'Orjou (8 feeders)
- Sous Station de Marche les dames (4 feeders)
- Sous Station Couvin (1 Feeder)
- Sous Station Florée (2 Feeders)

Une demande a été adressée en 2012 à ELIA pour le renforcement des Feeders de sa sous-station de Marche-les-Dames afin de pouvoir alimenter les industries du zoning de Namêche (NAM 04 et NAM 05), et en prévision de l'implantation d'une sous station de traction (6 MW) d'INFRABEL.

Selon le tableau de la charge des Feeders, page 7, aucun des Feeders des autres sous station ne nécessitera de renforcement dans les années à venir, il est à noter que ces sous stations sont partagés par l'AIEG avec d'autres GRD (TECTEO, IDEG), et que l'évolution de la consommation sur les réseaux de ces GRD peut nécessiter dans les années à venir un renforcement ou une augmentation de capacité.

Une autre demande a été adressée à ELIA afin de réserver pour l'AIEG une logette dans la future sous station de Marquain, ce projet fait suite à la demande de raccordement d'un client industriel de 1600 kVa.

Injection dans le réseau de transport Local

Poste	P.Tfo	P. Réservée	P.Dispo (G.Trad)	P.Dispo (G.Flex)	remarques
Bois d'Orjou	2x50 MVA	0 MVA	25 MVA	30 MVA	Réservation pour ENECO annulée
Couvin	2x20 MVA	0 MVA	6,4 MMVA	10 MVA	Poste vétuste, remplacement cellules MT par ELIA en 2020
Florée	2x20 MVA	0 MVA	17,2 MVA	20 MVA	Réservation pour Windvison annulée
Marche les dames	2x25 MVA	0 MVA	20 MVA	25 MVA	Travaux de modernisation en cours

Feeders

La mise en service en 2014 du poste déportée AIEG a été l'aboutissement d'un projet de rénovation Hors norme du réseau MT de <u>la commune</u> <u>d'Andenne</u>, les travaux de construction de cette cabine avaient été lancés en 2013 dans le cadre de la construction des nouveaux bâtiments administratifs et techniques de l'AIEG à seilles et on coïncidés avec les travaux de raccordement du zoning de petit waret , toujours en cours, le projet dans sa globalité a impliqué :

- L'extension du jeu de barre du poste ELIA de Bois d'Orjou avec l'installation de 4 logettes primaires supplémentaires en protection différentielle
- La construction du poste
- L'équipement de la cabine
 - 24 cellules Blindés
 - 4 Arrivées en protection différentielle
 - o 3 bouclages
 - 14 départs disjoncteurs
- Le ripage des feeders existants sur le nouveau poste
- La pose de de nouveaux câbles pour reprendre les Feeders de deux Cabines vétustes destinées à être désaffectées:
 - SEILLES
 - GODFRIND
- L'installation d'une télé contrôle complet pour la supervision de l'ensemble des éléments de la cabine

Le choix d'une liaison en protection différentielle a été fait pour garantir une fiabilité accrue et une continuité de service en cas de défaut sur l'un des départs, dans la configuration retenue , les 4 câbles PRC 400 Alu fonctionnent en parallèle et sont protégés de manière sélective par relais communiquant au moyen d'une fibre optique , un défaut sur un ou deux départs génère un coupure sur les Feeders en défauts et leur charge est automatiquement reprise par les feeders saint sans qu'aucun URD ne soit coupé.

Dorénavant, c'est à partir de ce poste déporté que les travaux de renforcement du réseau MT du centre d'Andenne seront réalisés. On peut aujourd'hui estimer que les Feeders de la commune d'Andenne sont parfaitement sécurisés au niveau du poste de distribution d'Elia.

Sur <u>la commune d'ohey</u>, la mise en service en 2013 de la Cabine de dispersion 'FONDS de BOLOGNE', alimentée à partir du réseau d'Andenne, a permis à la fois d'assainir une partie du réseau aérien vétuste de la commune, les 5 départs, protégés par disjoncteurs, qui alimentent la commune aujourd'hui, sont configurés de manière à ce que les déclenchements dus au défauts dans les réseaux aériens, n'influencent pas les zones ou le réseau aérien a été enfouis, et ce à travers un choix judicieux des coupures d'exploitation et de bouclage mais aussi, par l'installation de réenclencheurs sur défaut qui évitent des coupures intempestives en cas de défaut furtif, le modules de télé

contrôle et de supervision installé dans cette cabine nous permet en outre d'être plus réactif en cas de déclenchement .

Une partie non négligeable de la commune d'OHEY (Les localités de GOESNES, EVELETTE, PERWEZ et JALLET) reste néanmoins alimentée à partir de la cabine TAHIER (Alimentation ORES) à travers un réseau Aérien qui pose encore problème en période hivernale, les travaux d'enfouissement, dans la continuité de ce qui a été fait en 2012 et 2013 sont en cours (Adaptations: OH_Enf2_TAMR, OH_Enf2_MRHA, OH_Enf3_TALIB, OH_Enf3_LIBMAT) et permettront d'assainir les principaux Feeders qui seront à terme utilisés comme feeders de secours puisque l'ensemble de l'alimentation de la commune d'ohey proviendra du poste déporté AIEG récemment mis en service.

À Viroinval, l'augmentation de la charge n'est pas de nature à mettre en difficulté le Feeder principal, tandis que le Feeder de Secours pourrait être surchargé en cas d'incident sur le Feeder principale en période hivernale ou en cas de forte consommation.

La continuité de l'alimentation en N-1 en cas de perte de l'alimentation principale (Couvin) pourra néanmoins être assurée à travers l'installation de deux groupes électrogènes de 630 kVa (déployables en 3 heures), permettant ainsi d'exploiter la ligne de secours (70² Cuivre) sans pour autant la mettre en danger.

À Rumes, la demande de raccordement d'un client industriel obligera l'AIEG à mettre en en service un feeder supplémentaire afin d'éviter la congestion (adaptation : RUM_OTAN_SPP & RUM_Racc_DIRECT), les travaux préliminaire ont déjà commencé en 2015, et devront s'étaler sur 2 années.

					Année	2014	Prév 2016/20	017 (+0,5%)	Prév 2016/2	019 (+1,5%)	
Commune	U service	Poste	Câble	l max	Charge max	% Util	Charge Max		Charge Max		Remarques - Adaptations
Andenne		S/St ELIA Bois D'orjou									
		AIEG 1	3x 400 mm² Alu	600 A	120 A	20%	122 A	20%	125 A	21%	Feeder Mis en service fin 2014
		AIEG 2	3x 400 mm² Alu	600 A	120 A	20%	122 A	20%	125 A	21%	Feeder Mis en service fin 2014
	15 kV	AIEG 3	3x 400 mm² Alu	600 A	120 A	20%	122 A	20%	125 A	21%	Feeder Mis en service fin 2014
	15 KV	AIEG 4	3x 400 mm² Alu	600 A	120 A	20%	122 A	20%	125 A	21%	Feeder Mis en service fin 2014
		PS Sart	3x 150 mm² Cu	450 A	160 A	36%	162 A	36%	167 A	37%	Point d'echange avec TECTEO
		Bois D'axhelet	3x 95 mm² Cu	300 A	40 A	13%	41 A	14%	42 A	14%	
		BC Velaine	3x 95 mm² Cu	300 A	15 A	5%	15 A	5%	16 A	5%	
		<u>Seilles</u>					0 A				Sous station partiellement désaffecté - vetuste
		Anton	3x 150 mm² Cu	450 A	250 A	56%	254 A	56%	261 A	58%	Feeder Désaffecté
		AS/Sucrerie	3x 95 mm ² Cu	300 A	0 A	0%	0 A	0%	0 A	0%	Feeder Désaffecté
		Chantiers Naval	3x 150 mm² Cu	450 A	185 A	41%	188 A	42%	193 A	43%	Feeder à Désaffecter en 2016
	15 kV	Lecomte Four	3x 150 mm² Cu	450 A	124 A	28%	126 A	28%	130 A	29%	Feeder Désaffecté
		Match	3x 95 mm² Cu	300 A	60 A	20%	61 A	20%	63 A	21%	Feeder Désaffecté
		Robert	3x 150 mm² Cu	450 A	220 A	49%	223 A	50%	230 A	51%	Feeder à Désaffecter en 2016
		Fusillés	3x 95 mm ² Cu	300 A	168 A	56%	171 A	57%	176 A	59%	Feeder Désaffecté
		Godfrind	3x 150 mm² Cu	450 A	121 A	27%	123 A	27%	127 A	28%	Feeder Désaffecté
		<u>AIEG</u>					0 A				Nouvelle sous station mise en service en 2014
		Fusillés	3x 240 mm² Alu	390 A	180 A	46%	183 A	47%	188 A	48%	
		DLM	3x 95 mm² Cu	390 A	24 A	6%	24 A	6%	25 A	6%	
		FourLecomte	3x 240 mm² Alu	390 A	110 A	28%	112 A	29%	115 A	29%	
		Bolly	3x 95 mm² Cu	390 A	32 A	8%	32 A	8%	33 A	9%	
		Match	3x 95 mm² Cu	390 A	48 A	12%	49 A	12%	50 A	13%	
	15 kV	Godfrind	3x 240 mm² Alu	390 A	6 A	2%	6 A	2%	6 A	2%	
		ZAE PW2	3x 400 mm² Alu	390 A	0 A	0%	0 A	0%	0 A	0%	
		Inasep	3x 95 mm² Cu	390 A	50 A	13%	51 A	13%	52 A	13%	
		Anton	3x 240 mm² Alu	390 A	180 A	46%	183 A	47%	188 A	48%	
		SNCB	3x 95 mm² Cu	390 A	16 A	4%	16 A	4%	17 A	4%	
		ZAE PW 1	3x 400 mm² Alu	390 A	0 A	0%	0 A	0%	0 A	0%	
		Ohey		390 A	0 A	0%	0 A	0%	0 A	0%	
	11,5 kV	S/ST Marche les dames					0 A				
		Aciérie 1	3x 400 mm² Alu	560 A	320 A	57%	325 A	58%	335 A	60%	2 autres feeder en 400 ² seront mis en service suite
	secours	Aciérie 2	3x400 mm² Cu	560 A	100 A	18%	102 A	18%	105 A		à l'implantation d'une sous station de traction
											d'Infrabel , le Feeder n° 3 est actuellement hors
		Aciérie 3	3x 150 mm² Alu	300 A	0 A	0%	0 A	0%	0 A	0%	service
Ohey		IDEG - Tahier- 2 Feeders	3x 93,3 mm² Alu	180 A	90 A	50%		51%			deviendra Feeder de secours
Onloy		IDEG - Beole	2 x 3x 34,4 mm² Alu	100 A	22 A	22%	22 A	22%	23 A		deviendra Feeder de secours
	15 kV	<u> </u>	2 x 0x 0 1, 1 11111 7 110	10071	227	22/0	2271	22/0	2371	2370	Feeder sur lequel sera reprise l'ensemble de la
		AIEG - Tilleul	3x 240 mm² Alu	412 A	60 A	15%	61 A	15%	63 A	15%	commune d'ohey
Rumes		IGEHO - Dumont	3x 240 mm² Alu	412 A	89 A	22%	90 A	22%	93 A		reseau Amont (N-1) surchargé
Tallios	15 kV	IEH - Aventure - Poterie	3x 50 mm ² Cu	200 A	102 A	51%		52%			reseau Amont (N-1) surchargé
Viroinval	11,5 kV	S/ST ELIA Couvin	3x 240 mm² Alu	412 A	230 A	56%	233 A	57%	241 A	58%	reseau Amont (14 1/ surcharge
virollival	11,5 KV	S/ST LLIA COUVIII	JA Z40 IIIIII AIU	417 H	230 A	30%	233 A	31%	241 A	36%	Secours pas assez suffisant pour reprendre
	sacours	Niverlée - Mazée	16 mm² + 50² Cu	80 A	40 A	50%	41 A	51%	42 A	52%	l'ensemble de Viroinval -
Gooves	secours	S/st ELIA 70 kV Florée	10 mm + 30- Cu	30 A	40 A	30%	0 A	31%	44 A	32/0	Injection Possible jusqu'à 17,8MVA
Gesves	11,5 kV	GESVES 1	3x 70 mm² Cu	240 A	8 A	3%	8 A	3%	8 A	3%	injection rossible jusqu a 17,0ivivA
	11,5 KV	GESVES 1	3x 240 mm² Alu	412 A	231 A	56%		57%		59%	
		OLUVLU Z	SA 240 IIIIII AIU	417 H	231 A	30%	234 A	31%	242 A	39%	
	lànand										
	<u>Lègendes :</u>	Foodoryétusta									
	F40/	Feeder vétuste									
		51% Feeder chargé à plus de 50% 49% Feeder chargé à Moins de 50%									
	24%	Feeder chargé à Moins de	LJ/0								

Année 2015 – Plan d'adaptation 2016-2019

Feeders d'échange

Commune	Localité	Cabine	Feeder	GRD	Pointe +	Pointe -	% Charge	Remarques
	Coutisse	Rochempré	AS Bousalle	RESA	35 A	0 A	23,3%	
	Andenne	Andennelle	AS / Sart	RESA	3 A	0 A	2,0%	
	Andenne	Lavigne	Huy	RESA	0 A	0 A	0,0%	
Andenne	Seilles	Mostombe	PS Sart	RESA	0 A	132 A	0,0%	Ce Feeder sera racheté par RESA dans le cadre de l'expropriation
	Maizeret	Maizeret		IDEG	12 A	0 A	8,0%	
	Nameche	Fond de Wartet		IDEG	0 A	0 A	0,0%	
	Seilles	Corbion	Farniente	RESA	0 A	0 A	0,0%	
	Goesnes	TAHIER	Goesnes	IDEG	60 A	0 A	40,0%	Feeder principal alimentant une partie de la commune d'ohey
Ohey	Goesnes	TAHIER	Libois	IDEG	20 A	0 A	13,3%	Feeder principal alimentant une partie de la commune d'ohey
	Evelette	BEOLE	4D	IDEG	15 A	0 A	10,0%	Feeder de secours alimentant une partie de la commune d'ohey
Gesves	Mozet	Haltinne	4D	IDEG	0 A	0 A	0,0%	
Viroinval	Mazée	Niverlée	3D	IDEG	40 A	0 A	26,7%	Alimentation d'environ 1/3 de la commune de viroinval
Duranas	Rumes	Aventure	Cimetiére	IEH .	250 A	O A	83,3%	Feeder principal alimentant une partie de la commune de rumes
Rumes	Taintignies	Dumont	Taintignies	IEH	230 A	10 A	76,7%	Feeder principal alimentant une partie de la commune de rumes

À Rumes, les deux feeders principaux, venant de l'IEH sont parfois temporairement bouclés pour permettre des travaux, ce qui fait que la consommation de l'ensemble de la commune est repris sur un seul départ, la demande de raccordement d'un client industriel de 1600 kVA nous oblige à mettre en service un Feeder supplémentaire à partir du poste de Marquain (Adaptation: RUM_OTAN_SPP & RUM_Racc_DIRECT) les deux Feeders actuels deviendront à terme des alimentations de secours, puisque l'AIEG disposera de son propre raccordement au poste.

Année 2015 – Plan d'adaptation 2016-2019
Page 11

Cabines de distribution

Depuis 2011, l'AIEG équipe systématiquement les nouvelles cabines de compteurs télé relevés, au niveau du ou des départs basse tension du transformateur MT/BT, ces compteurs envoient leurs mesures ¼ horaire à notre centrale d'acquisition, des mesures qui peuvent être consultées et analysées à tout moment.

Ces compteurs nous renseignent à la fois sur le taux de charge des transformateurs, mais aussi sur la qualité de l'onde de tension (harmoniques, variation de fréquence, surtensions, flicker ...), la méthode a toutefois ces limites, en ce sens qu'elle ne permet pas de savoir le taux de charge sur les départs BT.

Pour les cabines existantes, nous essayons dans la mesure du possible de les équiper avec ce type de matériel, lorsque celles-ci s'y prêtent bien (tableau BT pouvant être équipé de Tores de mesures).

Pour les cabines les plus problématiques, la bonne vieille méthode de l'ampèremètre à aiguille, couplée à des mesures sporadiques en période de grande consommation permettent d'apprécier l'état de charge du transformateur

Transformateurs de distribution

Les transformateurs de distribution situés dans les cabines haute tension sont équipés de protection Interrupteur-Fusible calibrée en fonction de la puissance du transformateur ; des cartouches de secours sont placées dans les cabines et sont régulièrement inspectées.

Pour les transformateurs de plus de 630 kVa, une protection par cellule disjoncteur est préconisée.

1.2. Nouveaux producteurs et consommateurs

1.2.1. Producteurs et consommateurs de plus de 10 kVa

Les tableaux ci-dessous reprennent les principaux clients producteurs et consommateurs ayant introduits des demandes d'études pour un raccordement au réseau, certains demandeurs n'ayant pas répondu aux propositions envoyées ont été simplement supprimés

<u>Producteurs et Auto producteurs > 250 kVa) :</u>

Commun	Localit Demandeur	Type Ra P souscrite (KVA) EI	Statut de la demande	Ref dossi	Adaptation résea	Remarques	*
--------	-------------------	------------------------------	----------------------	-----------	------------------	-----------	----------

Néant

<u>Industries (gros consommateurs):</u>

Commun	Localit Dem	andeur Type	t T Ra	P souscrite (KVA)	E.	·	Statut	de la deman	de	*	Ref dossi	Adaptation résea	Remarques
Andenne	Nameche Infrabel	Client Industriel	I MT	6 MVA	Oui		sept-11	janv-13				NAM05	EN cours de réalisation
Andenne	Andenne Betramo	Client Industriel	ВТ	100 kVA		août-12		sept-13		х			
RUMES	Taintignies FABRICO	M Client Industriel	l MT	1600 kVA	Oui		janv-14					RUM_OTAN_SPP	EN cours de réalisation
Andenne	Seilles FONDAT	Client Industriel	l MT	10 MVA		janv-15							

Zonings et Lotissements :

Commun	Localit	Demandeur	Туре	i T Ra →	P souscrite (KVA)	E -	·	Statut de la demande						Ref dossi	Adaptation résea	Remarques
Andenne	Andenne	Thomas & Piron	Lotissement &	ВТ	1600 kVA			oct-11		déc-13			X		AND10_TP	implantation d'une cabine MT avec 2 Transfo -
			Immeubles à App													réalisation du raccordement provisoire
Andenne	Andenne	KOCKELBERG -	Lotissement &	MT	4000 kVA				déc-12						AND_REVIT_C	
		revitalisation	Immeubles à App													EN cours de réalisation
Andenne	Landenne	BEP	Zonings	MT	5 MVA				déc-10	janv-12					LAN02	Travaux en cours
Andenne	Landenne	BEP - PW	Zonings	MT	6 MVA			déc-11	déc-12							Travaux en cours

Auto producteurs > 100 kVa - sans Injection :

Commun	_ Localit'_	Demandeur 🖵	Type 🍴	Ra P souscrite (KVA)	Statut de la demande	Ref dossi	Adaptation rése	Remarques

NEANT

Année 2014 - Plan d'adaptation 2015-2018

Adaptations prévues pour Projets Eoliens :

Les deux projets éoliens prévus ont été soit annulés soit suspendus (ENECO et Wind vision) faute d'obtention de permis.

Adaptations prévues pour les Zones d'activités économiques

Deux projets d'implantation de parcs d'activité économique, sont actuellement en cours dans la commune d'Andenne, financés par le BEP, ces zonings sont destinés à accueillir des entreprises artisanales, industrielles ou de services.

Le premier Projet, dit de 'LA HOUSSAIE', à Landenne, sera alimenté directement à partir du réseau MT existant, et nécessitera la pose de 2 km de câbles à l'intérieur du zoning, ainsi que l'implantation de 2 cabines réseau, nous profiterons des travaux du zoning pour enterrer une portion de 2 km de réseau aérien MT.

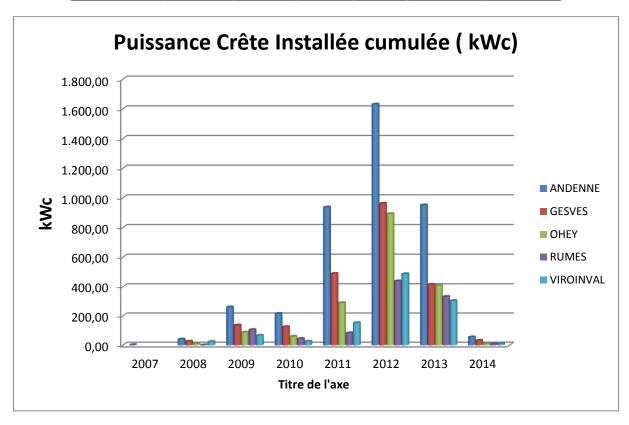
Le deuxième projet, dit de 'PETIT Waret', plus conséquent (6MVA), ne pourra être alimenté à partir du réseau MT existant, une pose de 8 km câble de la nouvelle cabine AIEG est actuellement réalisée afin d'assurer l'alimentation du zoning. aucune modification de la sous station 70kV de seilles ne sera nécessaire, le transfo existant (50 MVA) étant largement suffisant.

Les Adaptations pour les autres projets ne nécessiteront pas de travaux d'infrastructure lourds, principalement des implantations de cabine et des jonctions sur des câbles existants.

Points d'accès au réseau ELIA (consommation)

			Point (d'accés EL	IA - prélév	<u>rement</u>		
Code EAN Pt d'accés	Nom du Pt d'accés	Commune	Tfo 1	Tfo 2	P totale	P à disp	Pmax en 2011	Adaptations & Projets
541453152781313650	COUVI 11-AIEG	Viroinval	20 MVA	20 MVA	40 MVA	10 MVA	3,15 MVA	
541453117627680303	SEILL 15-AIEG	Andenne	50 MVA	50 MVA	100 MVA	93 MVA	33,4 MVA	Implantation de deux parcs d'activité economique (Houssaie et Petit Waret) , Puissance disponible pour 25 MVA en Injection ou en consommation
541453137910103791	MARLD 11-AIEG	Andenne	20 MVA	13,3 MVA	33 MVA	17 MVA	6,26 MVA	renforcement suite à la demande de raccordement d'infrabel - Remplacement du Tfo 13,3 MVA par un Tfo 25 MVA et construction d'une nouvelle sous station
541453104514712094	FLORE 11-AIEG	Gesves	20 MVA	20 MVA	40 MVA	18 MVA	4,20 MVA	

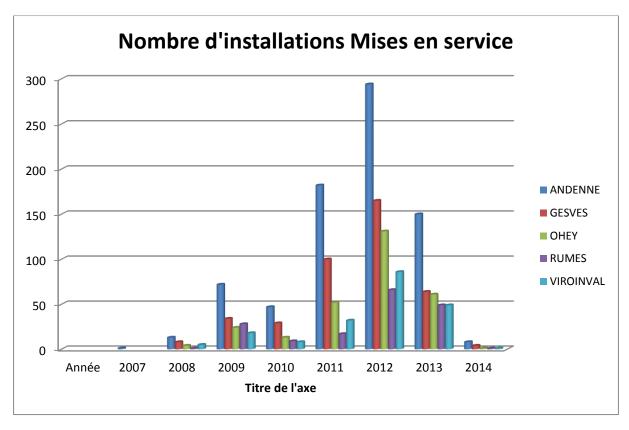
Points d'accès au réseau ELIA (capacités d'injection)


	<u>Injection</u>							
Code EAN Pt d'accés	Nom du Pt d'accés	Commune	Tfo 1	Tfo 2	P totale	P à disp	Pmax en 2011	
541453152781313650	COUVI 11-AIEG	Viroinval	20 MVA	20 MVA	40 MVA	10 MVA	1 3,15 MVA	15 MVA disponible - pas de projet en cours
541453117627680303	SEILL 15-AIEG	Andenne	50 MVA	50 MVA	100 MVA	93 MVA	33,4 MVA	35 MVA Disponible - pas de projet en cours
541453137910103791	MARLD 11-AIEG	Andenne	20 MVA	13,3 MVA	33 MVA	17 MVA	I 6,26 MVA	10 MVA disponible - pas de projet en cours
541453104514712094	FLORE 11-AIEG	Gesves	20 MVA	20 MVA	40 MVA	18 MVA	4,20 MVA	projet eolien WINDVISION Annulé

1.2.2. Producteurs de moins de 10 kVa

En 2014 la dégringolade pour le secteur du photovoltaïque s'est confirmée et amplifiée avec une puissance crête installée divisée par 20 par rapport à 2013 et par 40 par rapport à 2012, la puissance totale cumulée des installations photovoltaïques sous le régime SOLWATT n'a été que de 115 kWc, soit le niveau le plus bas depuis 5 années

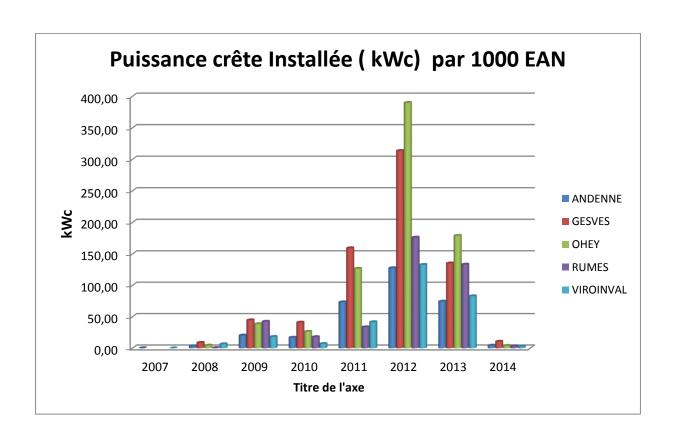
En fin d'année 2014, l'AIEG comptait 1827 installations en régime solwatt et 15 en régime Qualiwatt pour une puissance crête installée d'environ 10,2 MWc. le tableau ci-dessous montre l'évolution de la puissance crête installée et du nombre d'installations par commune et par année :


	Puissance crête installée (KWc)					
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Moy général
Année						
2007	2,79					2,79
2008	41,28	26,78	10,20	1,23	24,27	103,76
2009	261,48	137,36	88,41	105,84	67,01	660,10
2010	216,84	125,98	60,60	44,72	25,93	474,07
2011	937,59	489,61	290,68	83,86	153,11	1.954,85
2012	1.631,13	962,88	893,10	439,61	487,70	4.414,42
2013	952,14	415,62	410,39	332,84	304,77	2.415,76
2014	55,79	32,58	9,31	8,00	10,00	115,68
Total général	4.099	2.191	1.763	1.016	1.073	10.141

En 2015, on peut donc s'attendre donc à une production Photovoltaïque décentralisée de minimum 10.000.000 kWh, soit ~8% de l'énergie consommée par l'ensemble des utilisateurs BT.

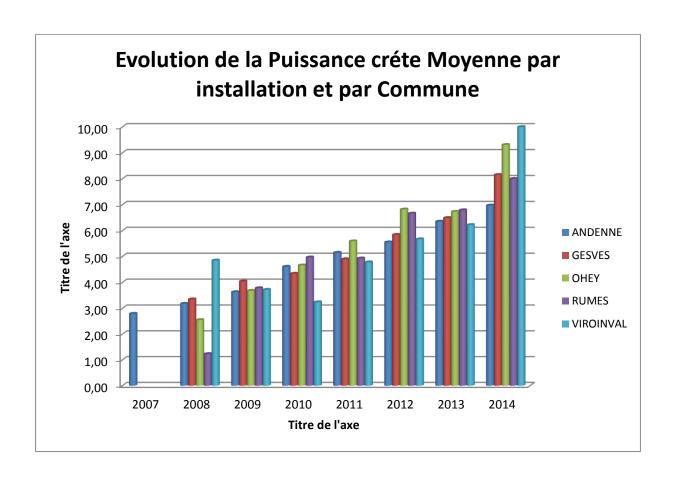
Nombre d'installations (PV):

	Nombre d'installations					
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Moy général
Année						
2007	1					1
2008	13	8	4	1	5	31
2009	72	34	24	28	18	176
2010	47	29	13	9	8	106
2011	182	100	52	17	32	383
2012	294	165	131	66	86	742
2013	150	64	61	49	49	373
2014	8	4	1	1	1	15
Total général	767	404	286	171	199	1.827



En 2013, une erreur de filtre s'était glissée dans le nombre d'installations mises en service, l'erreur a été corrigée cette année et ce sont 373 installations qui ont été mises en service au lieu de 119 annoncées précédemment.

Le tableau ci-dessus montre l'évolution de la puissance crête par 1000 EAN, par commune et par année :


Puissance Installée par 1000 EAN (kWc/1000 EAN)

<u>Puis</u>	Puissance crête installée par 1000 EAN (kWc/1000EAN)					
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Moy général
Nbre EAN	12.768	3.070	2.291	2.493	3.667	24.289,0
Année						
2007	0,22				0,00	0,11
2008	3,23	8,72	4,45	0,49	6,62	4,27
2009	20,48	44,74	38,59	42,45	18,27	27,18
2010	16,98	41,04	26,45	17,94	7,07	19,52
2011	73,43	159,48	126,88	33,64	41,75	80,48
2012	127,75	313,64	389,83	176,34	133,00	181,75
2013	74,57	135,38	179,13	133,51	83,11	99,46
2014	4,37	10,61	4,06	3,21	2,73	4,76
Total général	321	714	769	408	293	417,53

Puissance crête moyenne installée

	Puissance crête Moyenne / Installation						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Moy général	
Année							
2007	2,79					2,79	
2008	3,18	3,35	2,55	1,23	4,85	3,35	
2009	3,63	4,04	3,68	3,78	3,72	3,75	
2010	4,61	4,34	4,66	4,97	3,24	4,47	
2011	5,15	4,90	5,59	4,93	4,78	5,10	
2012	5,55	5,84	6,82	6,66	5,67	5,95	
2013	6,35	6,49	6,73	6,79	6,22	6,48	
2014	6,97	8,15	9,31	8,00	10,00	7,71	
Moy général	5,34	5,42	6,16	5,94	5,39	5,55	

Régime QUALLIWATT

En 2014 le lancement du régime Qualiwatt n'a pas non plus permis de relancer la filière puisque seulement 15 installations ont été mises en service sur l'ensemble du réseau AIEG, le tableau ci-contre renseigne leur nombre par commune :

		Statistiques C	QUALIWATT 2	014		
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
Nbre URD	12.768,00	3.070,00	2.291,00	2.493,00	3.667,00	24.289
Total Instal	9,00	1,00	2,00	1,00	2,00	15,00
Total kWc	51,47	6,00	11,14	1,73	13,35	83,69
kWc / 1000 EAN	4,03	1,95	4,86	0,69	3,64	3,45
Moyenne kWc	5,72	6,00	5,57	1,73	6,68	5,58

Problèmes Rencontrés:

Tension réseau et seuil de déclenchement des onduleurs

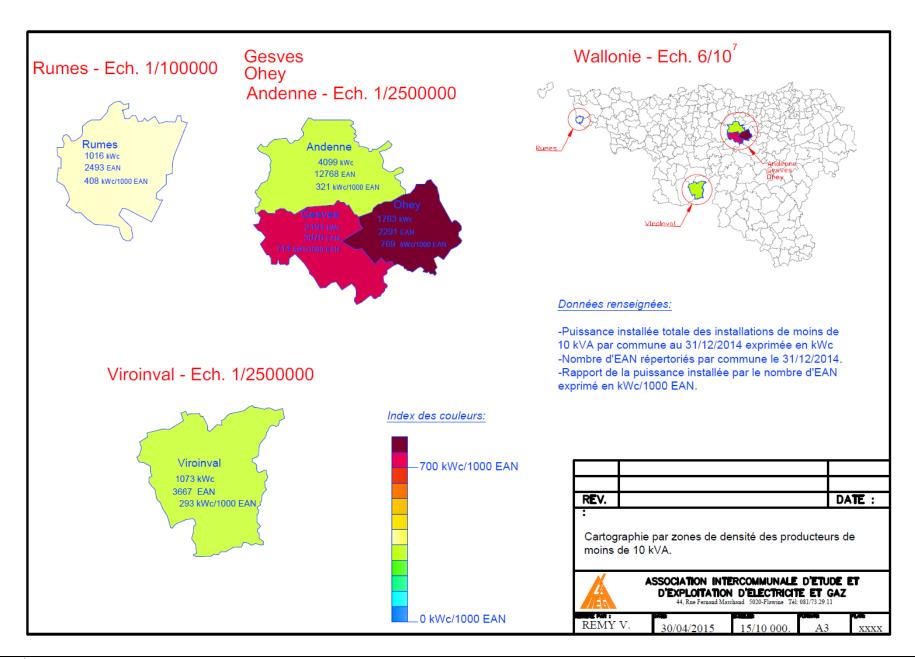
La tension de sortie du transformateur est généralement réglée à un seuil supérieur à la normale afin de compenser la chute de tension pour les usagers les plus éloignés, le cas le plus défavorable surgit donc lorsqu'une installation photovoltaïque se trouve à proximité de la cabine, alors même qu'il n'y a pas de consommation sur le réseau.

Un autre aspect lié à ses déclenchements, est le réglage des plages de tension de l'onduleur, qui sont mises par défaut à un maximum de +6% de la tension nominale, un changement du seuil de déconnexion a +10% par l'installateur permet généralement d'éviter ses déclenchement intempestifs.

Impédance réseau

Phénomène répandue principalement dans les installations situées dans des sites éloignés, l'impédance du réseau joue un rôle prédominant dans le fonctionnement d'un onduleur photovoltaïque, puisqu'elle détermine sa tension au point d'injection. Le dédoublement des tresses permet généralement de résoudre ce problème, mais le bénéfice en termes de qualité d'approvisionnement est quasi NUL.

Injection déséquilibrée


La majorité des onduleurs présents sur le marché aujourd'hui sont de type monophasé, étant donné l'augmentation de la puissance moyenne des installations photovoltaïques, un déséquilibre du réseau est à craindre si plusieurs installations sont mises sur une même phase. Une attention toute particulière devra être prêtée aux règles d'injection dans le réseau.

Chevauchement des tensions

On retrouve ce problème dans les cas ou plusieurs installations sont connectées au même réseau BT, les onduleurs de différents producteurs n'ayant aucun moyen de communication entre eux s'excitent les uns les autres, et font monter la tension réseau jusqu'à la déconnexion, ce phénomène est d'autant plus insidieux que ces chevauchements n'arrivent que le jour où il y a un fort ensoleillement.

À ce stade, aucun investissement n'est prévu par l'AIEG sur les 3 prochaines années, si ce n'est des renforcements ponctuels des raccordements client lorsque le besoin s'en ressent.

La carte à la page suivante reprend le nombre d'installations PV mise en service au 31/12/2014 :

1.3. Problèmes de congestion

Sur base du tableau reprenant la charge des Feeders, il n'y a pas ou peu de risque de congestion, les travaux réalisés à seilles, avec la mise en service de la cabine AIEG ont permis de sécuriser l'alimentation électrique de la commune d'andenne et Ohey qui connaissent aujourd'hui un Boom immobilier exceptionnel.

Viroinval	11,5 kV	S/ST ELIA Couvin	3x 240 mm² Alu
	secours	Niverlée - Mazée	16 mm² + 50² Cu

Dans la commune de Viroinval le seul risque de congestion concerne principalement une alimentation de secours venant du GRD IDEG, en période hivernale, ou une forte demande, couplée à une indisponibilité du feeder principal pourrait obliger l'AIEG à recourir à des groupes électrogènes pour soulager le Feeder de Niverlée.

Parallèlement à cela, des travaux du GRD IDEG sont en cours afin de renforcer un autre feeder Alimentant aujourd'hui exclusivement l'IRM situé au village de Dourbes, ces travaux une fois terminés, nous permettront de disposer, moyennant de légers travaux (Dérivation de ligne et changement de Poteau) d'un Feeder de secours supplémentaire, qui rendra inutile le recours à des groupes électrogènes.

Gesves		S/st ELIA 70 kV Florée	
	11,5 kV	GESVES 1	3x 70 mm² Cu
		GESVES 2	3x 240 mm² Alu

Le même problème se pose aussi à Gesves, qui dispose de deux Feeders mais dont l'un (Gesves 1)est à la fois vétuste (ligne aérienne en cuivre nu), mais aussi insuffisant pour reprendre, l'ensemble de la charge (section 70²), toutefois, le renforcement du réseau moyenne tension du côté de Wierde, par l'IDEG, en 2009, a permis à l'AIEG de disposer d'un secours fiable pour alimenter l'ensemble de la commune de GESVES en cas défaut sur l'alimentation principale

Rumes	15 kV	IGEHO - Dumont	3x 240 mm² Alu
	15 KV	IEH - Aventure - Poterie	3x 50 mm ² Cu

À Rumes, suite à la demande de raccordement d'un client industriel (1600 kVa), l'étude de charge réalisée conjointement avec ORES a révélé que le réseau amont (ores) pourrait présenter des risques de congestion sur le moyen terme si des travaux de renforcement ne sont pas réalisés , pour rappel, la commune de Rumes, dont le réseau est 100 % souterrain) est alimentée exclusivement à partir de deux feeders à partir du réseau ORES (anciennement IGEHO) , une augmentation de charge de cette ampleur nécessitera soit :

 Un renforcement du réseau aérien (ORES) qui alimente la commune • La pose d'une alimentation nouvelle à partir de la sous station ELIA de Marquain

C'est vers la deuxième solution que l'AIEG a décidé de s'orienter (Adaptation RUM_Racc_DIRECT), à terme les deux feeders actuels deviendront des alimentations de secours et d'échange d'énergie.

La commune de Ohey, ou on retrouve le plus grand nombre de portions de réseau en antenne, est aujourd'hui alimenté à partir de 3 feeders distincts, l'enfouissement d'une partie du réseau moyenne tension de Ohey permettra de transférer toute l'alimentation de la commune sur le câble nouvellement posé (240° PRC Alu), les 2 autres feeders deviendront des alimentations de secours.

Certaines portions du réseau d'Andenne présentent aussi un risque minime de congestion, mais l'état de maillage du réseau est tel qu'une reprise de charge sur un autre feeder est toujours possible, de plus, les principaux Feeders alimentant Andenne seront bientôt remplacés dans le cadre de l'implantation de la nouvelle sous station AIEG.

1.4. Problèmes de chutes de tension ou de surtensions

Critères contractuels appliqués : Un = 230 V +/- 10%

Les chutes de tension sont particulièrement récurrentes en période hivernale, ou la consommation d'électricité à des fins de chauffage explose.

Les problèmes de chute de tension sont généralement résolus grâce à l'augmentation de la tension de sortie du transformateur ; ce qui ne manque pas, une fois la période hivernale passé, de générer des problèmes de Hausse de tension.

Le dédoublement de réseau aérien n'est pas toujours la solution la plus pertinente, puisqu'on peut se retrouver très vite avec des réseaux surdimensionnés, par rapport aux besoins Réels, sans pour autant régler le problème.

Dans le réseau de l'AIEG, la commune de Rumes est la principale concernée par ces problèmes de chutes de tension qui ont nécessité l'implantation de deux cabine réseau 'Gloriette' et 'Chevalier' (Adaptation RUM01 et RUM05), ces deux projet sont néanmoins repris dans la rubrique 'Amélioration de l'efficacité du réseau', car ces adaptations permettront d'abord et avant tout d'améliorer le maillage du réseau MT.

1.5. Adaptations suite aux coupures non planifiées

1.5.1. Coupures en BT

Dans le rapport de qualité, seulement 5 localités avaient un taux de pannes/1000 abonnés supérieur à 2 fois la moyenne (12,31) :

Coutisse: 25,25

Haltinne: 26,03

Mozet: 27,45

Jallet: 59,41

Dourbes: 26,67

Ces chiffres sont toutefois à relativiser car ils ne reflètent nullement l'état de vétusté du réseau basse tension surtout dans les localités de Dourges et coutisse ou des investissements récents ont été consentis.

À l'analyse des résultats on peut remarquer que seules les communes avec une faible densité de population ressortent, c'est le cas notamment de Jallet et de Mozet avec respectivement 100 et 258 codes EAN actifs, mais qui n'ont connu que 13 dépannages dont 5 dus à une agression extérieure.

Dans la commune d'Ohey, quelques portions de réseau en cuivre nu subsistent, mais l'essentiel du réseau est aujourd'hui constitué de tresse préassemblée BAXB 95 mm², l'enfouissement du réseau basse tension dans la commune d'ohey en 2012 et 2013 a été l'occasion pour assainir et enfouir quelques tronçons de réseau BT en cuivre Nu.

À Andenne, 2 km lignes BT en cuivre nu sur les localités de Landenne et Seilles, ont été remplacées en 2014, les travaux ont dû être suspendu afin de permettre la pose de câbles HT pour l'alimentation du zoning de petit waret, nous en avons profité pour enterrer certains tronçons, d'autres portions seront aussi rénovées en 2016 principalement la rue Godfrind qui sera réalisée en 2015 et la rue du rivage.

SEI TRMK	Remplacement Cu Nu par câble préassemblé - rue de
	Tramaka
CEL CDED	Remplacement Cu Nu par câble préassemblé - rue Godfrind -
SEI_GDFR	Rivage

Sur les entités de Viroinval, et Rumes, il n'y a plus de lignes en cuivre nu, l'analyse des coupures basse tension ne démontre pas la nécessité de procéder à des investissements.

1.5.2. Coupures en MT

L'analyse des interruptions non programmées sur le réseau de l'AIEG révèle une stabilisation du nombre d'incidents en moyenne tension, les investissements réalisés (pose de câble, installation de disjoncteurs..), ont permis de renforcer certains tronçons problématiques et d'augmenter le degré de sélectivité , empêchant des coupures générales.

A Andenne, la mise en service, fin 2014, du nouveau poste déporté AIEG a permis de remplacer des tronçons vétustes de câbles papier plomb par une liaison de 4 câbles PRC Alu de 400 mm² en protection différentielle, gage d'une fiabilité accrue, l'aboutissement de ce projet stratégique nous permettra s'envisager l'avenir avec sérénité, Seuls quelques tronçons de câbles vétustes devront à l'avenir être remplacés de manière ponctuelle notamment , une portion de câble vétuste dans le Zoning de Seilles ainsi que deux projets à Landenne qui permettrons le démontage de ligne aérienne vétustes:

AND03	Liaison souterraine Tilleul Anton
LAN_CHT_PW	Enfouissement du troncon Landenne - Petit Waret (3 km)
LAN_PALHYE	Raccordement souterrain PA Lahaye
SEI_Agr-JUMATT	remplacement de la liaison Jumatt - Intergari (zoning de seilles) - 1200 m

Le projet pour le remplacement de la liaison Tilleuls Anton (AND03) est toujours d'actualité, mais les récents travaux réalisés pour le renouvellement des feeders ont permis de sécuriser le bouclage de la cabine des Tilleuls, nous verrons dans les prochaines années si il y a lieu de véritablement remplacer cette liaison qui n'est pour le moment qu'un secours supplémentaire.

Le gros de l'effort se concentre toujours sur **Ohey**, ou l'enfouissement du réseau aérien vétuste et dangereux continuera jusqu'en 2019, Avec 5 adaptations majeures :

OH_EOL_ENCO	Raccordement parc eolien - ENECO				
OH Enf2 TAMR	Enfouissement du troncon Libois - Matagne (4km)				
OH_EIII2_TAIVIK OH_Enf2_MRHA	remplacement de la liaison Jumatt - Intergari (zoning de seilles) - 1200 m				
OH_Enf3_TALIB	Enfouissement du troncon Landenne - Petit Waret (3 km)				
OH_Enf3_LIBMAT	Raccordement souterrain PA Lahaye				

Un projet de démontage d'une ligne aérienne à Viroinval ; pour faciliter l'accessibilité est prévu, mais il est néanmoins reporté jusqu'en 2017, car la ligne concernée est une ligne de secours, qui n'a son utilité qu'en cas de perte de l'alimentation principale et des deux alimentations de secours (ce qui est hautement improbable).

VIR DERPT	déplacement de la dérivation Petigny
VIII_DEIXI I	acpiacement ac ia acmitation i etiginy

1.6. Qualité de l'onde de tension

En basse tension, les contrôles de tension sont effectués chez les clients qui en font la demande, un enregistreur de tension est placé chez le client pendant une durée pouvant aller de 7 à 10 jours.

Une analyse est ensuite effectuée pour déterminer s'il y a lieu de prendre des dispositions particulières (changement de tresse, renforcement, Baisse de la tension Transfo..) afin de régler le problème.

Pour les clients MT et Trans BT, des compteurs AMR permettent de surveiller constamment et en temps réel la qualité de l'onde, aucun problème particulier n'a été relevé jusque-là.

SMRT_PV	Installation de compteurs télérelevée chez les clients PV
SMRT_PME	Installation de compteurs télérelevée chez les clients PME

Ces adaptations sont néanmoins reprises dans 'Evolution vers les réseau intelligents'.

- 2. Autres aspects à prendre en compte
 - 2.1. Remplacement pour cause de vétusté

Matériel Cabines HT

7 projets de remplacement de matériel vétustes dans des cabines sont prévus :

MOZ_GO	Remplacement des equipements - Cabine Goyet
SEIL_DES_GDF	Renouvellement Cabine GODFRIND - installation RM6 + reprise de ces Feeder sur la SD AIEG
SCL_REN_ANT	Renouvellement matériel MT de la Station de dispersion Anton
AND_REN_TLL	Renovation de la Cabine Divisonnaire 'LES TILLEULS'
AND_REN_WIN	Renovation de la Cabine Réseau Winant
AND_REN_MEUSE	Renovation de la Cabine Réseau Meuse
AND_REN_TDC	Renovation de la Cabine Réseau Trou du chat

L'adaptation MOZ_GO à gesves concernera le remplacement de matériel vétuste dans une cabine dérivation alimentant le Hameau de Mozet.

La deuxième adaptation concernera la cabine Godfrind , une ancienne cabine divisionnaire désaffectée suite à la mise en service du poste déporté AIEG, les 30 logettes devront être démantelée et la cabine désamiantée avant l'installation d'un tableau 2KT classique, et ce afin de continuer à alimenter le transformateur réseau ; cette cabine passera donc du statut de station de dispersion à Cabine réseau.

Les 5 autres projets concernent tous des cabines importantes (plus de 6 départs) dans la commune d'Andenne , dont le matériel devra à terme être renouvelé , soit parce que le matériel existant n'est plus conforme ou dans certains cas parce que l'AIEG ne dispose plus de matériel de rechange en cas d'incident (cas de la sous station d'ANTON), la rénovation de ces cabines est d'autant plus importante qu'elle permettra à l'AIEG d'installer du nouveau matériel modulaire et blindé équipé d'un système de supervision et de télé contrôle , ce qui participera non seulement à améliorer la sécurité dans nos cabines , mais aussi à diminuer les délais de rétablissement en cas de panne

Câbles et lignes

Le présent tableau reprend les longueurs respectives, par commune des réseaux, basse et moyenne tension

Réseau Basse tension - % Aérien						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
Réseau Aérien	235.276 m	100.966 m	73.523 m	45.461 m	66.234 m	521.460 m
Réseau Souterrain	42.176 m	6.780 m	5.329 m	6.585 m	8.668 m	69.538 m
% Aérien	85%	94%	93%	87%	88%	88%
		Réseau Haute	tension - % A	érien	•	
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
Réseau Aérien	31.348 m	44.413 m	37.420 m	0 m	35.119 m	148.300 m
Réseau Souterrain	164.513 m	15.810 m	15.321 m	32.384 m	34.434 m	262.462 m
% Aérien	16%	74%	71%	0%	50%	36%

Pour la basse tension, nous remarquons une prédominance du réseau Aérien, sauf pour les raccordements de nouveaux lotissements ou d'immeubles à appartements, certains tronçons sont parfois enterrés à la demande des communes, dans le cadre de projet d'embellissements (plan Epure, Lumière ...).

Il est toutefois difficile de tirer un lien de cause à effet entre la présence de réseau aérien en basse tension et le nombre de pannes enregistrées, le réseau aérien restant quand même un moyen très fiable d'alimenter les abonnés, mais surtout de les rétablir rapidement en cas d'incident.

En Moyenne tension par contre, 64% du réseau est enterré, avec des disparités entre les différentes communes, des différences principalement dues au relief géographiques, ou aux réalités socioéconomiques (l'implantation par exemple de Zonings industriels ou de lotissements est une bonne occasion pour enterrer des lignes afin de fiabiliser le réseau).

Ainsi, dans la commune de Rumes, les alimentations en haute tension sont exclusivement souterraines, c'est ce qui explique le nombre d'incidents sensiblement bas en haute tension.

La commune d'Andenne, avec ses 16% de réseau aérien connait le plus grand nombre de coupures en moyenne tension, des interruptions autant dues, aux intempéries qui sollicitent le réseau aérien périphérique, qu'aux défauts des câbles papier Plomb qui commencent à vieillir.

2.1.1. Vétusté du réseau Aérien

Le tableau ci-dessous reprend les longueurs vétustes dans le réseau, Moyenne et basse tension :

					I	I
Réseau Aérien Basse tension						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2011	33.976 m	10.032 m	430 m	0 m	0 m	44.438 m
L vétuste en 2012	31.476 m	9.032 m	430 m	0 m	0 m	40.938 m
L vétuste en 2013	29.476 m	9.032 m	0 m	0 m	0 m	38.508 m
L vétuste en 2014	28.483 m	9.032 m	0 m	0 m	0 m	37.515 m
Longueur Totale	235.276 m	100.966 m	73.523 m	45.461 m	66.234 m	521.460 m
% vetusté	13%	9%	0%	0%	0%	7%
	•	Réseau Aérie	n Moyenne te	nsion		•
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2011	4.111 m	25.060 m	23.935 m	0 m	21.203 m	74.309 m
L vétuste en 2012	4.111 m	25.060 m	20.935 m	0 m	21.203 m	71.309 m
L vétuste en 2013	4.111 m	25.060 m	14.935 m	0 m	21.203 m	65.309 m
L vétuste en 2014	4.111 m	25.060 m	12.657 m	0 m	21.203 m	63.031 m
Longueur Totale	31.348 m	44.413 m	37.420 m	0 m	35.119 m	148.300 m
% vetusté	13%	56%	40%		60%	44%

État de vétusté du réseau Aérien (MT et BT) :

Réseau Aérien						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2012	33.587 m	34.092 m	14.935 m	0 m	21.203 m	103.817 m
L vétuste en 2013	33.587 m	34.092 m	14.935 m	0 m	21.203 m	103.817 m
L vétuste en 2014	32.594 m	34.092 m	12.657 m	0 m	21.203 m	100.546 m
Longueur Totale	266.624 m	145.379 m	110.943 m	45.461 m	101.353 m	669.759 m
% vetusté	13%	23%	13%	0%	21%	16%

En basse tension, Le taux de vétusté élevé dans les commune d'Andenne et de Gesves s'explique par la présence massive de ligne en cuivre nu, qui sont démontées petit à petit, en 2012, 1,5 km de lignes en cuivre nu ont été remplacées par de la tresse préassemblées à SEILLES et LANDENNE, et environ 1 km à Gesves.

En moyenne tension, ce sont les communes d'OHEY, Gesves et Viroinval qui ont des taux de vétusté supérieurs à 50%, des investissements massifs ne peuvent être envisagés en raison de l'étendue des réseaux, qui s'étalent parfois sur plusieurs kilomètres pour alimenter des petits postes aériens de 100 kVa.

l'état de vétusté de certains tronçons est aussi parfois jugé sur l'état de dégradation des poteaux , et pas seulement sur l'état des lignes, Suite à des visites de contrôle d'organismes agréés, des infractions ont été relevées sur bon nombre de poteaux moyenne tension de la commune de Gesves , 15 poteaux ont déjà été remplacés en 2014.

En 2013 et 2014 ,5 km de lignes aériennes vétustes ont été démantelée principalement à OHEY, et 3 autres km ont été mis hors service et sont en attente de démantèlement.

2.1.2. Vétusté du réseau souterrain

Réseau souterrain Moyenne tension						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2012	47.240 m	2.124 m	0 m	0 m	0 m	49.364 m
L vétuste en 2013	44.240 m	2.124 m	0 m	0 m	0 m	46.364 m
L vétuste en 2014	38.135 m	2.124 m	0 m	0 m	0 m	40.259 m
Longueur Totale	164.513 m	15.810 m	15.321 m	32.384 m	34.434 m	262.462 m
% vetusté	29%	13%	0%	0%	0%	19%
		Résea	u souterrain			
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2012	45.360 m	2.124 m	0 m	0 m	0 m	50.484 m
L vétuste en 2013	45.360 m	2.124 m	0 m	0 m	0 m	47.484 m
L vétuste en 2014	39.255 m	2.124 m	0 m	0 m	0 m	41.379 m
Longueur Totale	206.689 m	22.590 m	20.650 m	38.969 m	43.102 m	332.000 m
% vetusté	22%	9%	0%	0%	0%	14%

État de vétusté du réseau Souterrain (MT et BT) :

	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2012	45.360 m	2.124 m	0 m	0 m	0 m	50.484 m
L vétuste en 2013	45.360 m	2.124 m	0 m	0 m	0 m	47.484 m
L vétuste en 2014	39.255 m	2.124 m	0 m	0 m	0 m	41.379 m
Longueur Totale	206.689 m	22.590 m	20.650 m	38.969 m	43.102 m	332.000 m
% vetusté	22%	9%	0%	0%	0%	14%

En basse tension, un réseau souterrain est en général un gage d'une bonne et pérenne alimentation, seules quelques portions à Andenne, sont toujours alimentées avec du vieux câble papier, mais ça ne pose aucun problème particulier en terme d'exploitation; aucun incident n'a été relevé en 2012 impliquant ces câbles; dans les autres communes, le réseau BT souterrain est en très bon état.

En moyenne tension, le vieillissement de certains câbles papier plomb posés dans les années 80 dans le centre de la ville d'Andenne commence à se faire sentir, des

déclenchements suite à des défauts récurrents sont constatés sur des feeders principaux qui sont remplacés par du câble PRC, plus résistants et plus fiable.

Il conviendrait toutefois de relativiser la longueur vétuste renseignée pour la commune d'Andenne (38 km), celle-ci ayant été calculée en prenant tous les câbles papiers plomb ayant plus de 20 ans d'âge, il est à noter que aucun de ces câbles n'est entré en défaut en 2014.

Sur les autres communes de Ohey et Viroinval, le taux de vétusté des lignes enterrées en MT, est quasi nul, soit parce que le réseau souterrain est quasi inexistant, soit parce que des investissements conséquent ont été réalisés (le réseau de Rumes a été complétement rénovés il y 15 ans).

2.1.3. Vétusté des réseaux selon le niveau de tension

Les tableaux ci-dessous présentent le degré de vétusté du réseau selon le niveau de tension

Réseau Basse tension						
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2013	30.596 m	9.032 m	0 m	0 m	0 m	39.628 m
L vétuste en 2014	29.603 m	9.032 m	0 m	0 m	0 m	38.635 m
Longueur Totale	277.452 m	107.746 m	78.852 m	52.046 m	74.902 m	590.998 m
% vetusté	11%	8%	0%	0%	0%	7%
		Réseau	Haute tension	Ì		
	ANDENNE	GESVES	OHEY	RUMES	VIROINVAL	Total général
L vétuste en 2013	48.351 m	27.184 m	14.935 m	0 m	21.203 m	111.673 m
L vétuste en 2014	42.246 m	27.184 m	12.657 m	0 m	21.203 m	103.290 m
Longueur Totale	195.861 m	60.223 m	52.741 m	32.384 m	69.553 m	410.762 m
% vetusté	22%	45%	24%	0%	30%	25%

En résumé, nous pouvons affirmer que le réseau bas est en très bon état, et que des efforts doivent être consentis afin de moderniser, ou rénover le réseau Moyenne tension principalement sur la commune de Ohey ou un effort considérable est consentis depuis 2012.

Tableau récapitulatif : vétusté du réseau aérien et durées d'assainissement

	ВТ	MT
Cu Nu	38.216 m	141.230 m
Cu Nu Vetuste	38.216 m	53.689 m
Taux de remplacement	8-10%	5%
Durée d'assainissement	~ 10 ans	> 15 ans

Nombre de km Démantelés par année en MT : \sim 7 km Nombre de km Démantelés par année en BT : \sim 1.5 km

La durée d'assainissement pour la moyenne tension dépend de plusieurs facteurs comme le nombre de pannes survenues dans l'année écoulée, certaines lignes sont parfois enterrés lorsque des travaux importants sont réalisés par les pouvoirs publics (travaux du MET, SWDE) ou pas un autre impétrant, des projets de gros lotissements ou de zones d'activités économiques sont aussi une très bonne occasion de fiabiliser l'alimentation en moyenne tension.

2.2. Interventions pour raison de sécurité

2.2.1. Sécurité Générale

Chaque année, l'ensemble du réseau HT de l'AIEG fait l'objet d'un contrôle par un organisme agrée afin de relever les éventuels problèmes. Les contrôles portent principalement sur le respect du RGIE, mais ces contrôles restent en deca des exigences de l'arrêté Royal 2008, et portent sur des aspects tell : l'enveloppe du bâtiment, la ventilation de la cabine, l'état des dispositifs de fixation des armoires, l'analyse de risque, préconisée par l'AR de 2008, étant plutôt remplacée par une liste exhaustive d'infractions et de remarques.

Les principales remarques en 2014 portaient sur l'état de vétusté de certains postes aériens dans l'entité de Ohey, ainsi que les valeurs des 'TERRE' élevées dans certaines cabines électriques de la communes de Viroinval, la mise en conformité est réalisée dans le cadre des entretiens annuels des cabines.

2.2.2. Distances de sécurité RGIE

Un seul cas de surplomb problématique se présente dans le réseau de la commune de Viroinval et concerne une dérivation de secours dans le déplacement est prévu au plan d'adaptation, reprise dans la rubrique COUPURE MT, le déplacement de la dérivation Pétigny n'est pas un problème urgent, c'est pour cette raison qu'il est reporté d'année en année.

VIR_DERPT	déplacement de la dérivation Petigny

2.2.3. Sécurité des cabines

En 2014, suite à la reprise de l'exploitation de la commune d'Andenne par l'AIEG, une analyse globale des risques dans les cabines haute tension afin de déterminer les Nœuds du réseau ou des investissements allaient être réalisés , l'analyse a donc englobées 223 éléments du réseau de distribution moyenne tension (Cabine réseau , Postes Aériens , Postes de sectionnement) visités in situ, et une classification a été établit en prenant en considération les éléments suivants

Statut de l'élément	nt Cabine réseau							
	☐ Station de dispersion							
	☐ Armoire de sectionnement HT							
	□ Poste Aérien							
	□ Interrupteur Aérien							
Nombre de Logettes	Nombre de cellules (disjoncteurs, Interrupteurs, sectionneur, Portes Fusibles, TI; TP)							
Vétusté du matériel	□ Très vétuste							
	□ Vétuste							
	□ Usager							
	□ Bon état							
	□ Neuf							
□ A.R 2008 (2012)	Non-Respect de l'A.R.							
	□ Oui							
	□ Non							
DG (Dangerosité)	1 : Pas de danger							
	5 : Cabine extrêmement dangereuse							

Une évaluation financière des couts de de mise en conformité des cabines a aussi été réalisée et peut être fournie le cas échéant ; Suite à cette analyse, nous avons pu dresser un premier diagnostic :

Étiquettes de lignes	Nombre de cabine
Cabine Réseau	89
Bon etat	17
Neuf	1
Très Vetuste	36
Usager	14
Vetuste	21
Interrupteur Aérien (Poteau HT)	13
Usager	13
Poste Aérien (Poteau HT)	75
Vetuste	30
Usager	45
Poste de sectionnement (Poteau HT)	36
Usager	36
Station de Dispersion	3
Neuf	1
Très Vetuste	2
Total général	216

Cabines et Stations de	dispersion
Respect de l'AR 2012	29
1	20
2	3
3	6
Non Respect de l'AR 20	64
2	4
3	19
4	7
5	34
Total général	93

Une évaluation des cabines dans les autres communes est en cours.

2.3. Environnement

2.3.1. Politique générale

En haute tension:

- Enfouissement des lignes Moyenne tension vétustes
- Alimentation des postes aériens en boite à Boite et installation d'armoires enterrées avec des équipements de coupure en charge
- Utilisation de câbles en PRC et Uniformisation des Sections (95² Alu et Cuivre, 240 ² et 400 Alu, pour la haute tension)

- Utilisation de cellules moyennes tension Modulaire afin de faciliter le remplacement individuel de la cellule défaillante
- Désaffectation des câbles papier plomb existants

En basse tension

- Démantèlement des lignes en cuivre nu
- Utilisation de transformateurs à perte réduite
- Pose de Feeders Basse tension en 150² Alu lors des projets d'enfouissement de la HT
- Raccordement réalisés avec des câbles en cuivre EVAVB 16 et

2.3.2. Actions spécifiques

Néant

2.4. Harmonisation des plans de Tension

En haute tension, l'AIEG gère des réseaux 11,5 et 15kV. Il n'y a pas de problème d'harmonisation entre les deux réseaux.

En basse tension , l'AIEG exploite des réseaux 3x230 sans neutre et 3x400+N , nous essayons d'encourager dans la mesure du possible les URD à opter pour des raccordements triphasés à travers des tarifs de raccordement attrayants, à titre d'exemple : à puissance égale, un raccordement triphasé est seulement 40 € plus cher qu'un raccordement monophasé.

2.5. Parallèle avec les investissements ELIA

Suite à une demande de raccordement de la société INFRABEL, pour l'implantation d'une sous station de traction à Marche Les dames, la cabine aciérie n'est plus en mesure de fournir la puissance de 6 MVA demandée, la construction d'une nouvelle cabine (réf : NAM05), équipée de matériel compact et moderne, a été finalisée en 2012, ELIA devrai en faire de même avec sa sous-station 70kV à Marche les dames.

Cette adaptation majeure, nécessitera, coté ELIA, le changement des deux transformateurs 70 kV qui alimentent sa sous-station. Le délai pour la réalisation de ce projet est de 2 ans.

La demande raccordement d'un futur zoning à Petit-Waret ne nécessitera pas de renforcement de la sous station ELIA de seilles.

À Rumes, la demande de raccordement d'un client industriel (1600 kVa), nécessitera un raccordement direct au poste ELIA de Marquain, ce projet est néanmoins repris dans la rubrique 'PROBLEMES DE CONGESTION'.

2.6. Amélioration de l'efficacité du réseau

Afin de limiter les pertes dans les réseaux 'moyenne tension', une uniformisation des sections de câbles utilisés est petit à petit mise en place :

- Liaison S/st Elia Station de dispersion : câble EAXeCWB 400/35 mm² ou EXCVB 300/35 mm²
- Liaison Cabine de Dispersion Cabines réseau : Câble EAXeCWB 240/25 mm² Alu ou EXCVB 95/25 mm² Cuivre
- Liaison entre cabines réseau et bouclage : Câble EAXeCWB 95/25 mm² Alu

En basse tension, la tresse BAXB 95mm² est généralisée depuis déjà plusieurs années, les raccordements des abonnés se font par défaut avec du câble tétra-polaire EXCVB 16mm² (cuivre), sauf si la puissance est trop importante.

Nous privilégions par ailleurs le placement de cellules à coupure en charge à la place de sectionneurs à vide, ainsi que l'installation de disjoncteurs à réenclenchement sur les portions de réseau majoritairement aériennes, ainsi que le placement de transformateurs à perte réduite. Les cellules sont toujours motorisés pour faciliter à l'avenir un éventuel télé contrôle, nous espérons atteindre en 2020 un taux de 15% de cabines télé contrôlées ou équipées de système de supervision à distance, les cabines de plus de 4 départ son systématiquement équipées d'une connexion à notre réseau VPN, ce qui facilitera le rapatriement de données (mesure de courant, déclenchement, court-circuit, surchauffe Transfo etc etc).

Dans la commune d'Ohey ; ou le réseau est à 95% aérien, les travaux d'enfouissement des lignes MT, impliqueront l'installation de coffret de sectionnement afin que les manœuvres puissent se faire à terre et non pas dans les airs, améliorant la rapidité des interventions et par la même occasion la sécurité des agents.

Parallèlement à cela, les nouvelles cabines AIEG sont systématiquement équipées de compteurs télé relevés au niveau des départs basse tension, ce qui nous permet en fin d'année de comparer la consommation totale des abonnés alimentés par ce transfo à l'énergie totale qui y a transité, ce qui constitue un très bon moyen de déceler certains cas de fraude ou de perte excessive.

Entre 2016 et 2019,6 adaptations majeures sont prévues afin d'améliorer l'efficacité du réseau :

NAM03	Liaison souterraine SD Aciérie - Maison Communale
NAM02	Liaison Souterraine Erable-Bois l'évêque -
VEZ01	Liaison Souterraine DemeuTer - Cabine AGIE
RUM_CLM	Implantation cabine réseau rue de clairmaie
RUM_GLR	Implantation nouvelle cabine 'Gloriette'
SMRT_DCC	instrallation de modules de détéction de courants de Défaut communiquants

Les 3 premiers projets situés à ANDENNE, concernent des portions de réseau qui sont déjà bouclées, mais seulement sur une seule sous station ELIA, la réalisation de ces travaux permettra de renforcer l'interconnexion entre les postes de marches les dames et de bois d'orjou et de pouvoir secourir ces portions de réseau en cas d'incident au poste, chose certes très rare, mais qui pourrait s'avérer utile en cas de délestage par exemple. Il n'y aucune urgence particulière à réaliser ces travaux pour le moment.

2 projets concernent la localité de Taintignies dans la commune de Rumes et permettrons un bouclage de deux tronçons en antenne à travers l'implantation d'une cabine réseau rue Clairmaie, cette cabine permettra en outre d'alimenter une zone résidentielle en pleine effervescence, parallèlement à ça, la liaison souterraine entre la cabine de tète Dumont et la cabine Wattimez , posé en 2013 mais pas encore mise en service , permettra de diviser l'alimentation de la commune de Rumes sur 3 Feeders distincts et de soulager ainsi le câble papier plomb existant.

La dernière adaptation concerne l'ensemble des communes, ou les cabines seront systématiquement équipées de détecteurs de courant de défauts rapatriés par GPRS, ces équipement permettrons à l'AIEG de diminuer sensiblement le temps de rétablissement en cas de coupure, à travers une localisation précise des tronçons en défaut.

2.7. Remplacement des compteurs

En 2014:

- 33 compteurs ont dû être changés suite à des demandes de désactivation du tarif nuit pour les producteurs photovoltaïques, dans certains cas, le compteur n'est pas remplacé, mais c'est le tarif nuit qui est désactivé à travers l'émetteur TCC
- 80 compteurs télé relevés ont été installés chez des détenteurs de panneaux photovoltaïques

2.7.1. Compteurs à Budget

Nous prévoyons en 2015 le placement de +/- 100 compteurs à budget :

	2011	2012	2013	2014
compteurs à Budget actif	464	489	493	500
compteurs à Budget Non Actifs	193	298	342	414
compteurs à Budget Placés	115	83	105	114

2.7.2. Compteurs « intelligents »

En 2010, l'AIEG avait procédé à l'installation de 120 compteurs télé relevés dans des immeubles à appartement, chez des clients basse tension ; le but était de tester les solutions de déploiement de compteurs dits 'Intelligents' chez des utilisateurs résidentiels, d'en estimer le cout en termes d'exploitation, et surtout d'en évaluer le gain sur le court et moyen terme.

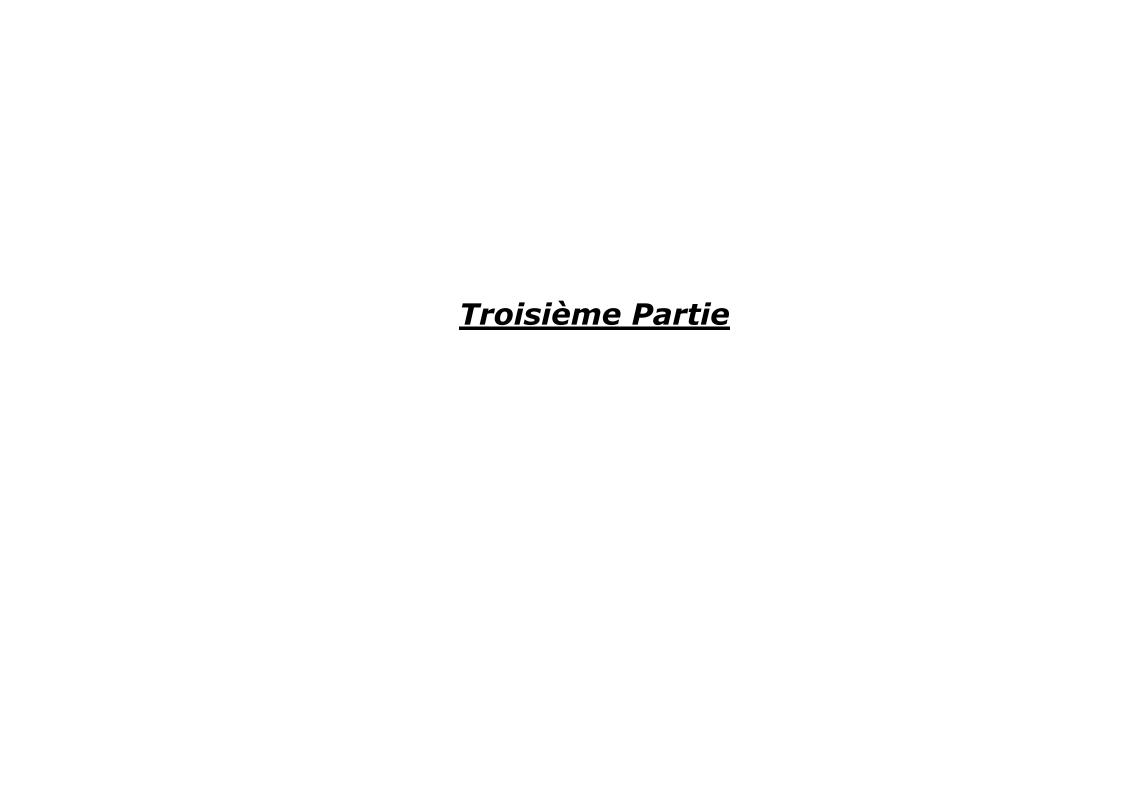
Le déploiement de ce genre de compteurs en novembre 2010, n'a pas généré de gain substantiel en termes d'exploitation, étant donné le nombre limité de compteurs par immeuble, mais les informations quant aux courbes de charges de l'ensemble de l'immeuble, à la variation de la consommation entre les ménages, furent intéressantes à analyser à bien des égards.

En 2014, 80 URD détenteurs d'une installation photovoltaïque ont été équipés de ce genre de compteurs, le choix s'est porté bien entendu sur les zones à haute densité d'installation PV et sur les clients ayant introduits des plaintes, le but était d'étudier l'influence de la multiplication de ce genre de productions sur le plan de tension et sur la stabilité du réseau.

2.8. Evolution vers les réseaux intelligents

- Les nouvelles cabines réseau sont systématiquement équipées de compteurs télé relevé permettant un suivi en temps réel de l'état de charge des transformateurs ainsi que de la qualité de l'onde de tension, le concept est maintenant élargie aux producteurs Photovoltaïques et aux PME (Adaptations SMRT_PME, SMRT_PV)
- La collecte et l'exploitation et la présentation des données rapatriées, se fera à l'aide de la centrale d'acquisition déjà existante et opérationnelle pour l'ensemble des clients HT et Trans BT
- chez l'AIEG, seuls les principaux feeders peuvent être enclenchés ou déclenchés à distance. Pour les autres manœuvres, l'AIEG a jusqu'à maintenant privilégiée la présence d'un agent qualifié sur le terrain, toutefois et afin d'améliorer les délais d'intervention, l'AIEG a décidée de se doter d'un système Scada qui permettra dans un premier temps le Monitoring des principales cabines du réseau, des instruments de mesures et des capteurs seront installés dans des cabines stratégiques afin faire remonter l'information et d'aiguiller plus vite l'agent sur la localisation d'une panne ou d'un défaut(SMRT_SCADA)
- Une dizaine de bornes recharge pour véhicules électriques seront bientôt installée dans les communes associées par des opérateurs privés.
- A l'heure d'un débat houleux sur l'augmentation du prix de l'énergie en général et celui de l'électricité en particulier. l'AIEG juge incongru de communiquer avec les utilisateurs de réseau sur des mesures, qui dans le court terme ne peuvent qu'augmenter le cout de l'électricité, car il ne faut point en douter, l'introduction de compteurs AMR aura, dans un premier lieu, un impact négatif sur le cout de l'électricité. à titre d'exemple, le tarif de gestion et de location d'un compteur intelligent est de 25 fois le tarif de location d'un compteur classique, bien sûr, on pourrait prendre en compte les économies que le déploiement de ces compteurs à grande échelle fera réaliser, mais il est un peu trop tôt pour pouvoir réellement les quantifier. Par ailleurs l'absence d'un cadre légal claire régissant la généralisation des compteurs intelligents ne permet pas en ce moment à l'AIEG de communiquer de manière claire sur cet aspect.

3. Les adaptations les plus importantes


Le tableau ci-dessous reprend les adaptations les plus importantes :

Réf	▼ <mark>Localité</mark> ▼	Intitulé	▼ Description ▼	Total →	2015	2016	2017	2018	2019	7
SEI_ZAE_PW	Seilles	1.2.1 - Producteurs et consommateurs de plus de 10 kVA	Amenagement Zoning de Petit Waret	€ 2.020.000	€ 2.020.000	0				
RUM_Racc_DIRECT	Rumes	1.3 - Problémes de congestion	Pose de Cable entre sous station MARQUAIN et Cabine de tete Aventure	€ 1.600.000	€ 800.000	€ 800.000)			
AND_REVIT_C	Andenne	1.2.1 - Producteurs et consommateurs de plus de 10 kVA	Implantation de 5 cabines réseau dans le centre d'andenne	€ 720.000	€ 240.000	€ 240.000	€ 240.000)		
OH_Enf_GOES	Ohey	1.5.2 - Coupures en MT	Enfouissement Tahier-Goesnes - mise sous	€ 700.000	€ 250.000	€ 250.000	€ 100.000	€ 100.00)	
OH_Enf2_TAMR	Ohey	1.5.2 - Coupures en MT	Enfouissement du troncon Tahier - Marchin (€ 400.000		€ 300.000	€ 100.000)		
NAM05	Nameche	2.5 - Paralléle Avec les investissements ELIA	Renforcement de la S/St de Marche les dames	€ 300.000	€ 150.000	€ 150.000)			
NAM02	Nameche	2.6 - Amélioration de l'efficacité des réseaux	Liaison Souterraine Erable-Bois l'évêque -	€ 300.000				€ 300.00)	
AND_REN_TLL	Andenne	2.1 - Remplacement pour cause de vetusté	Renovation de la Cabine Divisonnaire 'LES TILLEULS'	€ 300.000			€ 150.000	€ 150.00)	
OH_Enf2_MRHA	Ohey	1.5.2 - Coupures en MT	Enfouissement du troncon Marchin - Haillot (3km)	€ 300.000			€ 200.000	€ 100.00)	
OH_Enf3_LIBMAT	Ohey	1.5.2 - Coupures en MT	Enfouissement du troncon Libois - Matagne (4km)	€ 250.000				€ 150.00	0 €100.	.000
SCL_REN_ANT	Sclayn	2.1 - Remplacement pour cause de vetusté	Renouvellement matériel MT de la Station de dispersion Anton	€ 210.000		€ 210.000)			
OH_Enf3_TALIB	Ohey	1.5.2 - Coupures en MT	Enfouissement du troncon Tahier - Libois (€ 200.000			€ 100.000	€ 100.00)	

Intitulé	→ Commune →	Localité √	Réf	▼ Description ▼	Motivation
1.2.1 - Produ	ucteurs et cons	ommateur	s de plus de 10 k\	/A	
		Andenne	AND_MGM	Implantation d'une cabine réseau - Alimentation du complexe MAGERMANS (Maisons et immeubles à Appartement)	Raccordement Clients - desaffectation de la cabine PRE DES DAMES (vetuste)
		Andenne	AND_RES_DIAM	Lotissement 200 appartements - H2R	raccordement client
	ANDENNE	Andenne	AND_REVIT_C	Implantation de 5 cabines réseau dans le centre d'andenne	projets dans le cadre de la revitalisation du centre d'andenne
		Nameche	NAM05	Raccordement suite à demande Infrabel	Raccordement Client MT
		Seilles	SEI07	Construction Cabine MT 'Belle Vue'	Alimentation Lotissement
		Seilles	SEI_ZAE_PW	Amenagement Zoning de Petit Waret	Alimentation de la Zone d'activité economique de petit waret
	OHEY	JALLET	OH_EOL_ENCO	Raccordement parc eolien ENECO	
	RUMES	Taintignies	RUM_OTAN_SPP	Raccordement client - station de pompage	
1.3 - Problér	nes de congest	ion			
	RUMES	Rumes	RUM_Racc_DIRECT	Pose de Cable entre sous station MARQUAIN et Cabine de tete Aventure	Commune de rumes alimentée sur réseau ORES (Echange) qui arrive à saturation
1.5.1 - Coupi	ures en BT				
	ANDENNE	Seilles	SEI_GDFR	Remplacement Cu Nu par câble préassemblé - rue Godfrind - Rivage	Démontage du réseau BT en Cu Nu (1,5 km)
1.5.2 - Coupi	ures en MT				
		Andenne	AND03	Liaison souterraine Tilleul Anton	Remplacement câble Vétuste - Feeder 2 de la Cabine Anton
	ANDENNE	Landenne	LAN_CHT_PW	Enfouissement du troncon Landenne - Petit Waret (3 km)	demontage de Lignes & Poteaux vetustes
		Landenne	LAN_PALHYE	Raccordement souterrain PA Lahaye	demontage de Lignes & Poteaux vetustes
		Seilles	SEI_Agr-JUMATT	remplacement de la liaison Jumatt - Intergari (zoning de seilles) - 1200 m	remplacement de cable PP vetuste
		Goesnes	OH_Enf_GOES	Enfouissement Tahier-Goesnes - mise sous terre de 6 km de lignes vetustes	demontage de Lignes & Poteaux vetustes
	Ohey	Goesnes	OH_Enf2_TAMR	Enfouissement du troncon Tahier - Marchin (3,5km)	demontage de Lignes & Poteaux vetustes
	- One y	Marchin	OH_Enf2_MRHA	Enfouissement du troncon Marchin - Haillot (3km)	demontage de Lignes & Poteaux vetustes
		Libois	OH_Enf3_TALIB	Enfouissement du troncon Tahier - Libois (3km)	demontage de Lignes & Poteaux vetustes
		Evelette	OH_Enf3_LIBMAT	Enfouissement du troncon Libois - Matagne (4km)	demontage de Lignes & Poteaux vetustes
	Viroinval	Olloy	VIR_DERPT	déplacement de la dérivation Petigny	Démontage ligne aérienne à travers Bois

2.1 - Rempla	cement pour o	ause de ve	tusté						
		Andenne	AND_REN_TLL	Renovation de la Cabine Divisonnaire 'LES TILLEULS'	Matériel Vetuste , Plus de piéces de rechange en cas de souci				
		Andenne	AND_REN_WIN	Renovation de la Cabine Réseau Winant	Matériel Vetuste , Sectionneurs à vide				
		SEILLES	AND_REN_MEUSE	Renovation de la Cabine Réseau Meuse	Matériel Vetuste , Sectionneurs à vide				
	ANDENNE	Andenne	AND_REN_TDC	Renovation de la Cabine Réseau Trou du chat	Matériel Ouvert , Sectionneurs à vide				
		Sclayn	SCL_REN_ANT	Renouvellement matériel MT de la Station de dispersion Anton	Matériel Vetuste, Plus de piéces de rechange en cas de souci				
		Seilles	SEIL_DES_GDF	Renouvellement Cabine GODFRIND - installation RM6 + reprise de ces Feeder sur la SD AIEG	Désaffectation de la cabine Godfrind TRES vetuste				
	GESVES	Mozet	MOZ_GO	Remplacement des equipements - Cabine Goyet	Protections vetustes				
.5 - Parallél	e Avec les inv	estissemer	nts ELIA						
	ANDENNE	Nameche	NAM05	Renforcement de la S/St de Marche les dames	Renforcement nécessaire suite à la demande de raccordement d'infrabel				
.6 - Amélio	ration de l'effi	cacité des i	réseaux						
		Nameche	NAM03	Liaison souterraine SD Aciérie - Maison Communale	Remplacement des deux câbles papiers plombs vétustes (35° et 150°) par 2 câbles PRC 240°				
	ANDENNE	Nameche	NAM02	Liaison Souterraine Erable-Bois l'évêque -	Bouclage de deux portions en antenne du réseau de Nameche				
		VEZIN	VEZ01	Liaison Souterraine DemeuTer - Cabine AGIE	Bouclage de VeZin sur la sous-station de marche les dames (1500 m de 3x1x 95² Alu)				
		Taintignies	RUM_CLM	Implantation cabine réseau rue de clairmaie	Bouclage complet du réseau MT de taintignies				
	RUMES	Taintignies	RUM_GLR	Implantation nouvelle cabine 'Gloriette'	Pour effectuer bouclage avec Rue Clairmaie en prévision de l'implantation d'une future cabine MT				
		Taintignies	RUM01	Liaison souterraine Temple - Gloriette (750 m)	Bouclage de la cabine Temple				
.8 - Evolutio	on vers les rés	eau Intellig	gents						
	_GRID		SMRT_PV	Installation de compteurs télérelevée chez les clients PV	Suivi et surveillance de l'influence de l'injection sur l'état du réseau				
	_GRID		SMRT_PME	Installation de compteurs télérelevée chez les clients PME	Suivi de production des client Importants non-AMR				
	_GRID		SMRT_DCC	Installation de modules de detection de court circuits communiquant	Suivi de production des client Importants non-AMR				

Intitulé	ŢŢ Commune ,	t Localité	Réf ▼	Total	2015	2016	2017	2018	2019
1.2.1 - Product	eurs et cons	ommateur	s de plus de 10 k	VA					
		Andenne	AND_MGM	€ 135.000	€ 45.000	€ 45.000	€ 45.000		
		Andenne	AND_RES_DIAM	€ 45.000	€ 15.000	€ 15.000	€ 15.000		
	ANDENNE	Andenne	AND_REVIT_C	€ 82.500		€ 82.500			
	AINDEININE	Nameche	NAM05	€ 55.000	€ 55.000				
		Seilles	SEI07	€ 430.000			€ 215.000	€ 215.000	
		Seilles	SEI_ZAE_PW	€ 300.000	€ 150.000	€ 150.000			
	OHEY	JALLET	OH_EOL_ENCO	€500.000			€ 250.000	€ 250.000	
	RUMES	Taintignies	RUM_OTAN_SPP	€300.000				€300.000	
1.3 - Probléme	.3 - Problémes de congestion								
	RUMES	Rumes	RUM_Racc_DIRECT	€ 150.000			€ 150.000		
1.5.1 - Coupure	es en BT								
	ANDENNE	Seilles	SEI_GDFR	€ 62.198		€ 62.198			
1.5.2 - Coupure	es en MT								
		Andenne	AND03	€ 35.000		€ 35.000			
	ANDENNE	Landenne	LAN_CHT_PW	€ 27.000	€ 27.000				
	ANDLINIL	Landenne	LAN_PALHYE	€ 37.500	€ 37.500				
		Seilles	SEI_Agr-JUMATT	€ 124.000			€ 124.000		
		Goesnes	OH_Enf_GOES	€ 36.000	€ 36.000				
		Goesnes	OH_Enf2_TAMR	€ 2.020.000	€ 2.020.000				
	Ohey	Marchin	OH_Enf2_MRHA	€ 40.000		€ 40.000			
		Libois	OH_Enf3_TALIB	€ 700.000	€ 250.000	€ 250.000	€ 100.000	€ 100.000	
		Evelette	OH_Enf3_LIBMAT	€ 210.000		€ 210.000			
	Viroinval	Olloy	VIR_DERPT	€ 99.000		€ 99.000			

2.1 - Remplacen	nent pour c	ause de ve	tusté						
		Andenne	AND_REN_TLL	€ 2.000.000		€ 2.000.000			
		Andenne	AND_REN_WIN	€ 15.000	€ 15.000				
		SEILLES	AND_REN_MEUSE	€ 1.600.000	€ 800.000	€ 800.000			
	ANDENNE	Andenne	AND_REN_TDC	€ 90.000		€ 60.000	€ 30.000		
		Sclayn	SCL_REN_ANT	€ 300.000			€ 150.000	€ 150.000	
		Seilles	SEIL_DES_GDF	€ 720.000	€ 240.000	€ 240.000	€ 240.000		
	GESVES	Mozet	MOZ_GO	€ 400.000		€ 300.000	€ 100.000		
2.5 - Paralléle A	vec les inve	estissemen	its ELIA						
	ANDENNE	Nameche	NAM05	€ 300.000			€ 200.000	€ 100.000	
2.6 - Améliorati	Amélioration de l'efficacité des réseaux								
		Nameche	NAM03	€ 200.000			€ 100.000	€ 100.000	
	ANDENNE	Nameche	NAM02	€ 250.000				€ 150.000	€ 100.000
		VEZIN	VEZ01	€ 135.000			€ 135.000		
		Taintignies	RUM_CLM	€ 270.000			€ 135.000	€ 135.000	
	RUMES	Taintignies	RUM_GLR	€ 270.000				€ 68.000	
		Taintignies		€ 75.600			€ 75.600		
2.8 - Evolution v	Evolution vers les réseau Intelligents								
	_GRID		SMRT_PV	€ 130.000			€ 130.000		
	_GRID		SMRT_PME	€51.000			€ 51.000		
	_GRID		SMRT_DCC	€ 75.000	€ 15.000	€ 15.000	€ 15.000	€ 15.000	€ 15.000

Annexes

Synoptique des réseaux (dans clé USB)